Compound Guidelines for NCE Candidacy

I. Chemistry

- A. Proven structure [requirement], single stereoisomer [guideline]
- B. Ownership: Structure is outside others' generic scope [guideline] and is new [requirement]
- C. Drug–likeness [guideline]
- D. Absence of reactive functional groups [guideline]

E. Practical process-scale synthesis [requirement]

- 1. Synthesis is concise (<10 linear steps)
- 2. Intermediate chemistry is scaleable (reagents, safety)
- 3. Starting materials are reliable
- 4. COG (cost of goods) affordable
- 5. Final product (API, active pharmaceutical ingredient) has reproducible purity
- 6. Impurities are known & characterized (safety)

F. Pharmaceutics

1. Acceptable crystalline polymorph for formulation (purity & physical properties)

- 1. Solubility (good 0.5 mg mL⁻¹ water pH 6.5, better 2 mg mL⁻¹)
- 2. mp > 125 °C
- 3. Thermal stability at rt (2 y solid form shelf life = <0.5% change 40 °C, 40 d)
- 4. Non-hygroscopic
- 5. Nota bene pharmaceutical formulation preference:

carboxylic acid, strong amine salt > weak acid, amine salt > neutral

Compound Guidelines for NCE Candidacy

[continued]

II. Pharmacokinetics

- A. Absorption
 - 1. Good (>25%) cell culture permeability, minimal transporter efflux (in vitro assay)
 - 2. Reasonable rodent dosing to >10x predicted efficacious exposure
 - 3. Validate w canine & primate (%F & blood level) to 1x predicted efficacious exposure

B. Clearance

- 1. Predict satisfactory human clearance from rodent, canine, primate ($\leq 10 \text{ mL min}^{-1} \text{ kg}^{-1}$)
- 2. %F > 30% after first-pass metabolism
- 3. First pass oxidative metabolism <30% by liver P450 polymorphs Cyp2D6 & Cyp2C19
- 4. IC_{50} of > 3 μ M for major P450 isozymes (or >1000x target IC_{50})
- 5. Clearance kinetics consistent with projected dosing & pharmacological exposure
- C. Plasma Binding (by albumin and α -1 glycoprotein) is <99% (all safety animals).
 - 1. <95% acceptable, 96–99% workable (can be beneficial), >99% unacceptable)

D. Metabolites

1. Major animal metabolites are known (safety, efficacy, IP issues assessed)

E. Mechanism of action & Biomarker identification

- 1. Discrete target (human target isolated & profiled, compare to other safety animals)
- 2. Target polymorph issues assessed
- 3. Biomarker identified
 - a. Using the target or target sequelae
 - b. Using the physiological response
 - c. Using precedent (new drug exposure compared to known efficacious drug)

III. Safety

A. Safety (in vitro assays)

- 1. >100x IC₅₀ selectivity compared to receptor/enzyme subtypes
- 2. Genetic toxicology negative (GeneTox)
 - a. Non-mutagenic Ames bacterial [non-GLP]
 - b. Negative in mammal chromosomal DNA damage assay [non-GLP]
- 3. hERG negative (<20% cardiovascular ion channel at 100x efficacious plasma level)
- 4. Clean in non-target human receptor profiling

B. Safety (pharmacological assays)

1. No distress in vivo, no adverse drug effect ex vivo in animals (e.g. canine whole animal cardiovascular evaluation, large animal target pharmacology: identify best animal parallel to human PK/PD projection)